Maschinelles Lernen für die Computersicherheit

V
2.5
Wahlvorlesungen
Informatik Lehrveranstaltungen
Wressnegger
KIT-Fakultät für Informatik
KASTEL – Institut für Informationssicherheit und Verlässlichkeit
SS 22
WS 21/22
SS 21
WS 20/21
SS 20
WS 19/20
VVZ ILIAS

The lecture is about combining the fields of machine learning and computer security in practice. Many tasks in the computer security landscape are based on manual labor, such as searching for vulnerabilities or analyzing malware. Here, machine learning can be used to establish a higher degree of automation, providing more “intelligent” security solutions. However, also systems based on machine learning can be attacked and need to be secured.

The module introduces students to theoretic and practical aspects of machine learning in computer security. We cover basics on features, feature engineering, and feature spaces in the security domain, discuss the application of clustering and anomaly detection for malware analysis and intrusion detection, as well as, the automatic generation of signatures and the discovery of vulnerabilities using machine learning. Additionally, we discuss the interpretability and robustness of learning-based systems.

Kommentare

Bitte logge dich ein, um Kommentare lesen zu können.

Termine

  • Mo, 15:45 - 17:15
    50.34 Raum -101
  • Mo (01.08.2022), 15:45 - 17:15
    50.34 Raum -101
  • Mo (08.08.2022), 15:45 - 17:15
    50.34 Raum -101

Bewertungen

(2)

Bitte logge dich ein, um Bewertungen sehen zu können.